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Instability of the mechanical equilibrium of ternary gas mixtures, in which the density from above is larger
than from below, is investigated by the two-flask method under isothermal conditions at different pressures. A
comparison of the experimental data with the results calculated within the framework of the linear analysis of
stability has shown fair agreement in determination of the boundaries of instability.

An experimental study of the diffusion in ternary gas mixtures in a vertical channel with isothermal diffusion
has revealed that under certain conditions (pressure, temperature, geometric sizes of a capillary) instability of the me-
chanical equilibrium of the mixture develops followed by free concentration convection in the gravity field [1, 2]. The
reasons for the occurrence of the gravitational convection can be explained within the framework of the linear theory
of stability [3], the application of which for the case of an isothermal mixture has revealed different types of diffu-
sional mixing [4, 5]. However, for some regimes of mixing experimental data are virtually absent. In this case, theo-
retical predictions of the position of the regions of stability (instability) need experimental verification. In the present
work, the authors report experimental data on determination of the boundaries of disturbance of the mechanical equi-
librium for diffusion of a heavier, with respect to density, binary mixture placed in the upper section of the channel
toward the third smaller-density component.

Procedure and Experimental Results. A change of the diffusion regime for free gravitational convection was
observed in a two-flask apparatus (Fig. 1) with flask volumes of C55.6 cm3, with the capillary of diameter d = 0.4 cm
and length of L = 6.4 cm at a temperature of T = 298 K. Experiments were carried out at different pressures. A study
was made of the diffusion of a binary mixture of helium and argon, placed into flask I, in nitrogen, which was in
flask II.

The composition of the initial components in the binary mixture was chosen such that at any pressure in the
experiment the density of the mixture in the upper flask was larger than the nitrogen density: ∇ρ mix > 0.

The initial composition of the binary mixture was analyzed by an ITR-1 interferometer with an error of 0.1%
and by a chromatograph with an error of 0.3%. In all cases, the experiment lasted 30 min. On cessation of each ex-
periment the composition of the gas mixtures was analyzed in both flasks.

The binary transition diffusion-concentration convection can be traced if the parameter αi = Qi
exp ⁄ Qi

theor (i =
1, 2, 3) is represented graphically as a function of pressure. Here Qi

theor is the diffusion flux calculated by the Stefan–
Maxwell equations in the assumption of diffusion [6], Qi

exp is the experimental flux found from experimental values of
the concentration and the time of mixing of the component i. The typical dependences of thus-obtained relative values
of αi on pressure for argon in the 0.3He + 0.7Ar − N2 and 0.1He + 0.9Ar − N2 systems (the gas concentrations are
given in molar fractions) are depicted in Fig. 2. Similar dependences are also observed for the other components of
the mixture.

A change of the diffusion-concentration convection regimes occurs when αi exceeds unity. The critical value
of pressure determining the transition from the diffusion region to the convection one is substantially smaller for the
systems with a positive density gradient than for the ternary mixtures where under similar conditions the instability of
the mechanical equilibrium is manifested for the case of a negative density gradient [1, 2]. An increase in the concen-
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tration of the heavy component in the mixture leads in the region of pressures from 1.2 to 1.5 MPa to a decrease in
the critical pressure determining the unstable regime of mixing.

Comparison of the Experimental Results and Theory. Following [3–5], we will repeat the reasoning behind
the occurrence of the instability of the mechanical equilibrium of the three-component gas mixture under the conditions
of isothermal diffusion in a plane vertical channel. Macroscopic motion of the isothermal gas mixture with account for

the condition of independent diffusion at which  ∑ 

i=1

3

 ji = 0 and ∑ 

i=1

3

 ci = 1 is described by the following system of equa-

tions:

 ρ 




∂u

∂t
 + (u∇)  u
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ρ 



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∂t
 + u ∇ ci




 = − div ji ,   j1 = − ρ (D11

∗ ∇ c1 + D12
∗ ∇ c2) ,   j2 = − ρ (D21

∗ ∇ c1 + D22
∗ ∇ c2) .

(1)

Fig. 1. Two-flask apparatus. Geometry of the problem.

Fig. 2. Dependence of α of argon on pressure in mixing of the binary helium-
argon mixture with nitrogen (T = 298 K); a) 0.3He + 0.7Ar; b) 0.1He +
0.9Ar. p, MPa.
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The "practical" diffusion coefficients Dij
∗  are related to the diffusion coefficients of the binary gas mixtures Dij by the

expressions

D11
∗

 = 
D13 [c1D32 + (c2 + c3) D12]

c1D23 + c2D13 + c3D12
 ,   D12

∗
 = − 

c1D23 (D12 − D13)
c1D23 + c2D13 + c3D12

 ,

D22
∗

 = 
D23 [c2D13 + (c1 + c3) D12]

c1D23 + c2D13 + c3D12
 ,   D21

∗
 = − 

c2D13 (D12 − D23)
c1D23 + c2D13 + c3D12

 .

System (1) is supplemented with the equation of state of a medium

ρ = ρ (c1, c2, p) ,   T = const ,

that makes it possible to relate the thermodynamic parameters in (1).
Account for the smallness of unsteady disturbances of the mechanical equilibrium, the assumption about the

linear distribution of the concentration of components in the channel, the neglect of the squared disturbance terms, the
choice of scale units of measurement (distance being the linear dimension of cavity d, time d2 ⁄ ν, velocity D22

∗  ⁄ d, con-
centration of the ith component Aid, pressure ρ0νD22

∗  ⁄ d2) allow one to pass from (1) to the disturbance equations [5]

Pr22 
∂c1

∂t
 − u = τ11 

∂2
c1

∂x
2  + 

A2
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 τ12 
∂2
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u
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2 + Ra1 τ11c1 + Ra2 c2 , (2)

where Prii = ν ⁄ Dii
∗ ; ν = η ⁄ ρ; Rai = gβiAid

4 ⁄ νDii
∗ ; βi = − 

1
ρ0

 

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∂ρ
∂ci


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p,T,cj≠ci

; τij = Dij
∗  ⁄ D22

∗ ; u = uz; Aiγ = −∇ ci0; γ – is the unit

vector directed vertically upwards, the index 0 pertains to average values.
A solution of (2) has the form
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where s = 1, 3, 5, ... are the odd modes of disturbances. The boundary conditions assume disappearance of the veloc-
ity and disturbances of the concentrations of the components ci on the vertical planes restricting a layer of the gas
mixture:

u = c1 = c2 = 0 ,   x = % 1 . (4)

Substitution of (3) into (2), account for (4), and vanishing of the real part of the disturbance decrement λ,
yield the equation of monotonic disturbances
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4
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As noted in [4, 5], if for the binary mixtures the region of stable diffusion is determined by fulfillment of the
condition Ra ≤ Racr, for the ternary mixtures the corresponding region should be sought on the two-dimensional plane
of partial Rayleigh numbers (Fig. 3).

Below line MM obtained within the framework of (15) the mechanical equilibrium is stable while above this
line, it is unstable. Since the mixture density is related to the concentrations of the components ci by the expressions

ρ = n (c1m1 + c2m2 + c3m3) = n [c1 (m1 − m3) + c2 (m2 − m3) + m3] = n (c1∆m1 + c2∆m2 + m3) ,
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the condition of vanishing of the density gradient of the mixture is of the form

∇ρ  = n [(dc1
 ⁄ dz) ∆m1 + (dc2

 ⁄ dz) ∆m2] = 0 . (6)

In terms of the Rayleigh numbers, expression (6) is written as

τ11 Ra1 = − Ra2 . (7)

In Fig. 3, condition (7) determines the line passing through the origin of the coordinates. Above this line, the
density gradient is positive. Analyzing Fig. 3, we can easily find the regions of diffusion and increasing monotonic
disturbances above instability line MM. If the conditions of the experiment are chosen in such a way that, for instance,
the system is in the diffusion region, then changing one of the parameters determining the Rayleigh number, e.g., pres-
sure, it is possible to pass to the region of gravitational concentration convection. This procedure is depicted in Fig. 3,
where the experimental points corresponding to stable diffusion (open circles) and convection (filled circles) are ob-
tained by substituting the experimental concentration values of the 0.1He + 0.9Ar − N2 mixture into the expressions for
partial Rayleigh numbers in the form [5]

Ra1 = 
gnd

4∆m1∆c1

ρνD11
∗

L
 ,   Ra2 = 

gnd
4∆m2∆c2

ρνD22
∗

L
 ,

n = 
p

kT
 ,   ∆c1 = c1I − c1II ,   ∆c2 = c2I − c2II ,   ∆m1 = m1 − m3 ,   ∆m2 = m2 − m3 ,

where index 1 corresponds to helium, 2 to argon, and 3 to nitrogen. From Fig. 3 it is seen that the experiment con-
firms the theoretical assumptions about the existence of the region of stable and unstable mechanical equilibrium in the
ternary gas mixtures when the density gradient is positive. A similar picture is also observed for the ternary
0.3He + 0.7Ar − N2 system.

Thus, it is shown that on isothermal diffusional mixing of a heavier-density binary mixture with a third (light)
component there exist regions of diffusion and gravitational concentration convection. The experiments with the

Fig. 3. Regions of diffusion and monotonically increasing disturbances. The
system is 1.0He + 0.9Ar − N2, T = 298 K. The experimental points correspond
to the following pressures: 1) 0.33; 2) 0.46 MPa (stable diffusion); 3) 0.58; 4)
0.83; 5) 1.07; 6) 1.56 MPa (unstable diffusion).
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He + Ar − N2 mixture prove the presence of these two regions. The location of the stability boundaries and monotonic
disturbances is described well by the linear theory.

The authors thank N. B. Ankusheva for her help in processing of the experimental results.

NOTATION

ci, concentration of the ith component; Dij
∗  and Dij, "practical" diffusion coefficient and mutual diffusion coef-

ficient of the gases i and j, respectively; g, gravitational acceleration; ji, density of the diffusion flux of the ith com-
ponent; k, Boltzmann constant; L, length of the diffusion channel; m, molecule mass; n, numerical density of the
mixture; Prii, Prandtl number; p, pressure; Rai, Rayleigh number; d, characteristic scale, diameter of the diffusion chan-
nel; T, temperature; t, time; u, velocity; α, parameter determining the diffusion-concentration convection transition; η,
coefficient of shear viscosity; λ, time decrement of disturbances; ν, kinematic viscosity of the mixture; ξ, coefficient
of volume viscosity; ρ and ρ0, density and mean density; τij, parameter determining the ratio between the "practical"
diffusion coefficients.
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